Normal coordinate analysis of isotactic polystyrene: 1. A force field for monosubstituted alkyl benzenes

Randy W. Snyder and Paul C. Painter

Polymer Science Section, Department of Materials Science and Engineering, 325 Steidle Building, The Pennsylvania State University, University Park, Pennsylvania 16802, USA (Received 17 November 1980; revised 13 February 1981)

The normal modes for toluene, toluene D8, and ethyl benzene are calculated starting from a revised force field for benzene. A good agreement is obtained between calculated and observed frequencies.

INTRODUCTION

Isotactic polystyrene (IPS) has been the subject of numerous vibrational spectroscopic studies. However, a satisfactory interpretation of the entire spectrum has proved elusive for a number of reasons. Perhaps the most obvious difficulty is the size of the problem, the relatively large repeat unit results in a complicated spectrum. Initial attempts at interpretation concentrated on assigning the phenyl ring modes using monosubstituted alkyl benzenes Subsequently, as models¹. assignments conformationally sensitive backbone and mixed ringbackbone modes were made on the basis of studies of deuterated and partially deuterated polymers²⁻⁵. This work met with only limited success because of the change in the form of many normal modes upon deuteration. Jasse et al.6-9 have recently studied a number of low molecular weight model compounds, paying particular attention to some of the conformationally sensitive modes below 600 cm⁻¹. However, some of the assignments used in these studies were based on the group frequencies of the phenyl ring, thus neglecting the possibility that such modes could mix with backbone vibrations. Furthermore, the assignment of infra-red bands and Raman lines to specific local conformations in model compounds may not be transferable to polymers, where conformationally sensitive modes are coupled along the chain.

A more precise understanding of the vibrational spectrum of IPS depends upon an accurate normal coordinate analysis of the polymer and should include the plotting of dispersion curves. Painter and Koenig¹⁰ attempted a vibrational analysis but there are a number of limitations to their calculations. The low frequency vibrational spectrum of IPS had not at that time been published, so that this conformationally sensitive region of the spectrum was essentially ignored. Because of limitations on computer time, only the potential energy distribution of the A modes was reported and the dispersion curves were not calculated. However, a more serious deficiency has become apparent as a result of our attempts to determine a revised valence force field for benzene¹¹. The valence force field applied to the vibrational analysis of polystyrene was similar to that defined by Lau and Snyder¹² for alkyl benzenes and

includes the definition of an interaction force constant. $F_{R(X)\Phi(X)}$. The interaction is between the ring-methyl stretching coordinate R(X) and a coordinate describing the in-plane bending of the same bond, $\Phi(X)$, and was refined to a significant value. However, monosubstituted alkyl benzenes this force constant should be zero by symmetry, since a vertical mirror symmetry operation through the ring and alkyl group leaves the stretching coordinate R(X) unchanged but reverses the direction of the bending coordinate. Finally, in the previous work all in-plane C-C-H bending coordinates of the ring were separately defined and because of the redundant coordinate at each carbon atom the definition of force constant interactions was confusing. In this communication we will report a valence force field for alkyl benzenes where these problems are taken into account. In the following paper this force field will be applied to IPS.

To make the force field generally applicable we have, as far as possible, used the force constant definitions of Snyder¹³ for the alkyl portion of the molecule and a previously reported modified valence force field for benzene for the phenyl ring¹¹. Interaction force constants between the ring and phenyl group were then defined and values determined by refining the observed and calculated frequencies.

CALCULATIONS

The normal vibrations were calculated on an IBM 370-168 computer using a program described by Boerio and Hannon^{14,15} and modified by Holland-Moritz and Painter and Snyder¹¹. The force field (F_R) is defined in terms of internal coordinates but the secular equation is transformed to a mass-weighted Cartesian coordinate description,

$$|D^T \mathbf{F}_R D - \lambda I| = 0$$

where $D = BM^{-1/2}$. The B matrix relates the internal and Cartesian coordinates while M is a matrix of the masses of the atoms. The secular equation can be transformed to a block diagonal form using external symmetry

coordinates. The Cartesian coordinates were calculated using bond lengths of $C_{\text{ring}}-C_{\text{ring}}$, $C_{\text{ring}}-C_{\text{alkyl}}$, $C_{\text{alkyl}}-C_{\text{alkyl}}$, $C_{\text{-Halkyl}}$ and $C_{\text{-Hring}}$ of 1.40, 1.51, 1.54, 1.09 and 1.084 Å respectively. Bond angles of 120° in the ring and tetrahedral angles in the alkyl group were defined. The internal coordinates are defined in *Figure 1*. The $C_{\text{-}}-C_{\text{-}}$ H angle bends, φ_i , were constructed as a combination $R_i(\varphi)$, defined as

$$R_i(\varphi) \stackrel{.}{=} 1/\sqrt{2})(\varphi_1 - \varphi_2)$$

and so on around the ring. The $1/\sqrt{2}$ is a normalization factor. This definition simplifies the definition of interaction force constants, as discussed previously¹¹.

The force field was obtained by refining an initial set of calculated frequencies to the observed frequencies of the molecules, Toluene, D8 Toluene and ethyl benzene. The observed frequencies were those reported by Lau and Snyder¹². For the convenience in the co-refinement the symmetry of both molecules was assumed to be C_s with a mirror perpendicular to the plane of the ring passing through the alkyl group. The initial group of interaction force constants were those defined by Lau and Snyder¹² with the exception of $F_{R(X)\Phi(X)}$, which was set equal to zero. Various force constants were included in a number of different refinements, but only those that appeared to have significant values were ultimately retained. In initial calculations we determined the ring-methyl stretch diagonal force constant, $K_{R(X)}$ to have a value of ~ 4.3 , significantly smaller than that of a paraffin C-C single bond, 4.532 (ref. 13). However, because the ring-methyl bond has a slight double bond character (the bond length

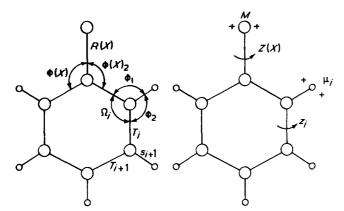


Figure 1 Internal coordinate definitions of a monosubstituted alkyl benzene

Table 1 Force constants for toluene and ethyl benzene

Force constants ^a	Coordinate involved	Φ_i	Disp.
Phenyl group, in pla	ane		,
K _T	Τ	7.0845	0.048
K _s	s	5.0220	
$H_{\mathbf{\Omega}}$	Ω	1.4612	
H_{ϕ}	φ	0.4956	
Η _φ F%	T_i, T_{i+1} (ortho)	0.6926	0.0368
FΨ	T_i, T_{i+2} (meta)	-0.5104	0.0450
FÅ,	T_i, T_{i+3} (para)	0.6042	0.0511
F 7 d	T_i, ϕ_i	-0.2714	
F'D'	T_i, ϕ_{i+1}	0.2714	
$F \overline{\mathcal{H}}_{\phi}$	T_{i}, ϕ_{i+1}	-0.0568	

Force constants ^a	Coordinate involved	Φ;	Disp.
F '' M _φ	T_{i}, ϕ_{i+2}	0.0569	
F <i>P</i> , Τφ	T_i, ϕ_{i-2}	0.1019	
<i>Ε'β</i> [*]	T_i, ϕ_{i+3}	-0.1019	
$F_{\mathcal{T}\Omega}$	Τ, Ω	0.3439	
F _{Ts}	T,s	-0.1150	
F _s	s_i, s_{i+1} (ortho)	0.0130	
F _Ω	Ω_{j},Ω_{j+1} (ortho)	0.0847	
$F^0_{\Omega\phi}$ $F^0_{\Omega\phi}$	Ω_{i}, ϕ_{i-1}	-0.1005	
$-\tilde{\Omega}\phi$	Ω_{i}, ϕ_{i+1}	0.1009	
FΩφ FQ FM FM	ϕ_i, ϕ_{i+1} (ortho)	0.0126	
Γ''' - 0	ϕ_i, ϕ_{i+2} (meta)	-0.0007	
$=\stackrel{\nu}{ ho}_{\phi}$	ϕ_i, ϕ_{i+3} (para)	-0.0185	
Phenyl group, out	of plane		
$H_{oldsymbol{\mu}}$	μ	0.3239	
HZ	Z	0.1190	
=0 μ = <i>m</i>	μ_i, μ_{i+1} (ortho)	0.0184	
= <i>m</i> μ = P	μ _i , μ _{i+2} (meta)	-0.0235	
F#	μ _i , μ _{i+3} (para)	-0.0227	
= 5	z _i , z _{i+1} (ortho)	-0.0388	
Fzμ	z_i, μ_i	0.0273	
F'zμ	z_i, μ_{i+1}	-0.0263	
Phenyl group—alky	d group interactions		
<r(x)< td=""><td>R(X)</td><td>4.7455</td><td>0.0999</td></r(x)<>	R(X)	4.7455	0.0999
HΦ(X)	$\Phi(X)$	0.7165	0.0268
$H_{\mathbf{Z}(\mathbf{X})}$	Z(X)	0.0100	
HM	M	0.3829	0.0167
TR(X)	$T_{i-1}, R(X), T_{i-2}, R(X)$	0.1729	0.0704
-0 ΩΦ(X)	$\Omega_{i}, \Phi(X)$	0.0758	0.1124
^F ΩΦ(X) ^F ΩΦ(X)	$\Omega_{j-2},\Phi(X)$	-0.0758	0.1124
F <i>T</i> Φ(<i>X</i>)	$T_{j-1},\Phi(X)$	-0.3752	0.1093
$F_{T\Phi}(X)$	$T_{j-2},\Phi(X)$	0.3752	0.1092
FΩR(X)	$\Omega_{i-1}, R(X)$	0.5258	0.103
F&R(X)	$\Omega_i, R(X), \Omega_{i-2}, R(X)$	0.1233	0.080
Alkyl group			
K _r	r	4.6990	
Kd	d	4.5380	
K _R	R	4.5320	
$H_{oldsymbol{lpha}}$	α	0.539	
$H_{oldsymbol{eta}}$	β	0.6180	
H_{δ}	δ	0.5330	
·lα	α	0.6630	
Hω	ω	1.032	
Fr	r,r	0.032	
=d	d,d	0.019	
⁼ R	R,R	0.083	
FRα	R, a	0.174	
⁼ 'Rα	R, a	-0.097	
FRω	R,ω	0.303	
Fβ	β,β	-0.031	
=α	α,α	-0.019	
= ′ α	α,α	0.021	
⁼ αω	α,ω	-0.022	
άβ	$\hat{\alpha}$, β	0.073	
.g. .	α,β	-0.058	
αβ	α,β	-0.009	
αβ	α,β	-0.004	
:t	α,ω	0.073	
$\alpha\omega$	α,ω	-0.064	
$H(X)\alpha$	$R(X)$, α or $R(X)$, β	0.1740	
⁼ 'R(X)α	$R(X),\alpha$	-0.0970	

Force constant units: stretching constants, mdyn/Å; bending constants, mdyn Å/rad²; stretch-bend interactions, mdyn/rad

Table 2 Observed and calculated frequencies and approximate potential energy distribution of toluene and ethyl benzene

Table 2a-Toluene A'

Freque	ncy (cm ⁻¹)	
νobs	v calc	Potential energy distribution
3057	3062	K _s (98%)
3055	3049	K _s (98%)
3054	3038	K _s (99%)
2949	2964	K _r (100%)
2900	2876	K _r (98%)
1606	1597	Κ _T (93%), Η _r (15%)
1497	1505	K_T (41%), H_{ϕ} (56%)
1450	1470	H _α (93%)
1380	1376	$K_{R(X)}^{\circ}$ (14%), H_{α} (45%), H_{β} (52%)
1211	1214	$K_T(17\%)$, $H_{\phi}(36\%)$, $K_{R(X)}(26\%)$
1182	1161	$K_T(13\%)$, $H_{\phi}(73\%)$, $K_{R(X)}(11\%)$
1041	1038	H _B (79%)
1030	1034	K_T^{\prime} (60%), H _r (12%), H _{ϕ} (20%)
1005	1009	K ₇ (25%), H ₇ (81%)
991	983	H_{ii} (97%), H_{z} (30%), F_{z}^{0} (17%), F_{zii} (-14%),
		F _{Zμ} (-14%)
898	908	H_{μ} (85%), H_{z} (22%)
788	787	$K_T(29\%)$, $H_r(31\%)$, $H_{dr}(10\%)$, $K_{R(X)}(35\%)$
732	735	$H_{II}(76\%)$, $H_{MI}(13\%)$
698	700	$H_{\mu}^{(43\%)}$, $H_{z}^{(27\%)}$, $F_{z}^{(17\%)}$
522	521	Κ _T (11%), Η _τ (79%), Η _Φ (13%)
467	471	$H_{II}(11\%), H_{Z}(24\%), H_{M}(48\%)$
220	209	$H_{\mu}^{(13\%)}$, $H_{z}^{(49\%)}$, $F_{z}^{(16\%)}$, $H_{M}^{(27\%)}$

Table 2b-Toluene A"

Freque	ncy (cm ⁻¹)	
v_{obs}	ν calc	Potential energy distribution
3056	3054	K _s (98%)
3055	3042	K _s (99%)
2951	2964	K _γ (100%)
1587	1590	K_T' (94%), $H_Ω$ (13%)
1468	1466	H ₀ (86%)
1445	1441	K_T^2 (38%), H_{ϕ} (59%)
1316	1335	$K_{T}(67\%), H_{\phi}^{V}(70\%), F_{T_{\phi}}^{O}(-11\%)$
		F学 (_11%)
1286	1292	K_{T} (81%), H_{ϕ} (49%), F_{T}^{0} (-14%), F_{T}^{T} (-11%) K_{T} (28%), H_{ϕ} (74%), $F_{T\phi}$ (11%), $F_{T\phi}$ (11%)
1157	1160	K_T (28%), H_{ϕ} (74%), F_{ϕ} (11%), F_{ϕ} (11%)
1084	1084	$K_T(41\%), H_{\phi}^{\gamma}(38\%)$
975	973	$K_{T}(18\%), H_{\beta}(72\%)$
967	968	$H_{\mu}(92\%), H_{z}(28\%), F_{z_{\mu}}(-12\%), F_{z_{\mu}}'(-12\%)$
841	849	$H_{\mu}^{(81\%)}$, $H_{z}^{(20\%)}$
622	623	H o (95%), Ha (12%)
407	405	H ₁₁ (18%), H ₇ (51%), F ₇ (17%)
348	336	$H_{\Phi(X)}^{\infty}$ (95%)
44	105	H ₂ (99%)

is 1.51 Å compared with the usual value of 1.54 Å in aliphatic hydrocarbons) we would expect that the value of this force constant would be >4.532. We determined that the introduction of interaction force constant $F_{R(X)\Omega}$ which was not defined in previous work, significantly affected the magnitude of $K_{R(X)}$, allowing the calculation of a final value of 4.7455. This is intuitively satisfying in terms of the values of other C-C stretching force

Other force constants which appear in our refinement but did not appear in the work of Lau and Snyder are $F_{\Phi(X)\Omega}$, $F'_{\Phi(X)\Omega}$, and $F^0_{\Phi(X)\Omega}$. These force constants refined to significant values and were retained while other interaction force constants (e.g. $F_{R(X)\Omega}^m$, $F_{R(X)T}^m$, $F_{R(X)\Omega}^m$, and

Table 2c-D8 Toluene A'

Frequer	ncy (cm ⁻¹)	
^v obs	^p calc	Potential energy distribution
2277	2288	K _s (93%)
2275	2277	K _s (93%)
2272	2264	K _s (95%)
2200	2212	K _r (99%)
2091	2073	K _r (96%)
1573	1579	K_T (91%), H_{Ω} (14%)
1389	1391	K_T (59%), H_{Φ} (24%), $K_{R(X)}$ (18%)
1175	1180	$K_T(20\%)$, H_{Φ} (12%), $K_{R(X)}$ (44%), H_{α} (13%) H_{β} (15%)
1051	1057	н _а (95%)
1036	1025	K_T (18%), H_{Ω} (19%), H_{α} (29%), H_{β} (34%)
963	957	$K_T^{\prime}(30\%), H_{\Omega}^{\prime}(69\%)$
883	873	H_Ω (14%), H_ϕ (58%)
871	863	H,, (40%), H _R (43%), H _M (24%)
841	825	κ _T (22%), H _Φ (61%)
812	808	H_{μ} (103%), H_{β} (12%)
718	724	H _a , (71%), H _a (12%), H _B (22%)
710	695	$K_T^{\prime\prime}(20\%)$, $H_{\Omega}^{\prime\prime}(25\%)$, $H_{\phi}^{\prime\prime}(37\%)$, $K_{R(X)}(23\%)$ $H_{\mu}^{\prime\prime}(15\%)$, $H_{Z}^{\prime\prime}(40\%)$, $F_{Z}^{0}(22\%)$, $H_{M}^{\prime\prime}(11\%)$
608	608	H_{ij} (15%), H_{z} (40%), F_{z}^{0} (22%), H_{M} (11%)
548	541	$H_{\mu}^{r}(76\%), H_{z}^{r}(20\%)$
490	482	H _O (71%), H _A (18%)
403	406	$H_{\mu}^{(14\%)}$, $H_{z}^{(31\%)}$, $F_{z}^{(10\%)}$, H_{M} (38%)
194	186	$H_{\mu}^{(10\%)}$, $H_{z}^{(51\%)}$, $F_{z}^{(0)}$ (17%), H_{M} (26%)

Table 2d-D8 Toluene A"

Freque	ncy (cm ^{—1})
νobs	$^{ u}$ calc	Potential energy distribution
 2275	2279	K _s (93%)
2273	2270	K _s (93%)
2204	2212	K _r (99%)
1549	1558	Kr (93%), Ho (10%)
1334	1320	K_T (116%), H_ϕ (22%), F_T (-13%), $F_{T\phi}$ (-11%)
1288	1279	K_r (123%), H_0 (15%), F_7^0 (-14%), F_7^m (-11%), F_7^0 (-11%)
1046	1055	H ₀ (96%)
1044	1030	H ₀ (89%)
862	842	H_{ϕ}^{r} (81%)
822	820	Κ _Γ (17%), Η _Φ (74%)
791	792	H_{μ} (105%), H_{z} (15%)
763	754	H _β (79%)
658	661	H _µ (81%), H _z (20%)
598	590	H_{Ω}^{-} (90%), H_{ϕ}^{-} (22%)
348	350	$H_{z}^{-}(64\%), F_{z}^{0}(21\%)$
297	292	$H_{\Phi(X)}$ (90%)
32	75	H _z (99%)

 $F_{\Phi(X)T}^m$ did not refine to significant values and were therefore removed from the refinement.

RESULTS AND DISCUSSION

The final values of the force constants are presented in Table 1. A good fit between the observed and calculated frequencies was obtained by refining the ring-alkyl interaction force constants and the ring constants, K_T, F_T^0 , F_T^m and F_T^p . All other force constants correspond to those determined for benzene¹¹ and the paraffins¹³. In the final analysis only fourteen force constants were included in the refinement.

The observed and calculated frequencies are listed in Table 2, together with the potential energy distribution for each mode. There is good agreement between the PED of

Table 2e-Ethyl benzene A'

Freque	ncy (cm ⁻¹)	
νobs	νcalc	Potential energy distribution
3061	3062	K _s (98%)
3049	3049	K _s (98%)
3038	3038	K _s (99%)
2965	2965	K _r (100%)
2878	2877	K _r (97%)
2855	2855	K _d (98%)
1606	1597	$K_T = (93\%), H_{\Omega} = (15\%)$
1500	1506	K_T (40%), H_ϕ (54%)
1467	1457	H_{α} (31%), H_{δ} (48%), H_{γ} (13%)
1455	1446	H_{α}^{-} (59%), H_{δ}^{-} (27%)
1378	1367	K_R^2 (10%), H_{α} (46%), H_{β} (52%)
1310	1315	$K_{R(X)}$ (22%), K_{R} (14%), H_{γ} (71%)
1207	1213	K_T (15%), H_ϕ (33%), $K_R(X)$ (19%), H_γ (17%)
1179	1163	$K_T(11\%), H_{\phi}(74\%)$
1065	1060	K _R (34%), H _β (41%)
1021	1034	K_{7} (59%), H_{Ω} (12%), H_{α} (21%)
1003	1009	Kτ (27%), Ho (77%)
990	983	H_{μ} (94%), H_{z} (29%), F_{z}^{0} (17%), $F_{z\mu}$ (-14%), $F_{z\mu}^{\prime}$ (-14%)
967	973	K_R ($\overline{37}$ %), $H_β$ (20%), $H_γ$ (13%)
904	913	$H_{\mu}(87\%), H_{z}(21\%)$
771	771	$K_T^{\mu}(10\%)$, H_{Ω} (13%), H_{μ} (21%), $K_{R(X)}$ (19%), $H_{\mathcal{B}}$ (12%), $H_{\mathcal{M}}$ (12%)
749	753	$K_T(11\%), H_{\Omega}(18\%), H_{\mu}(28\%), K_{R(X)}(16\%), H_{M}(10\%)$
700	705	H_{μ} (63%), H_{z} (20%), F_{z}^{0} (12%)
557	561	H_{Ω} (34%), H_{μ} (11%), H_{ω} (20%)
487	492	H_{Ω} (36%), H_{Z} (12%), H_{M} (19%)
362	315	$H_z(22\%), H_{\omega}(37\%)$
157	141	H _z (33%), H _ω (16%), H _M (37%)

Toluene and Toluene D8 determined in these calculations and the PED determined by Lau and Snyder¹². However, there is a minor discrepancy concerning the assignment of the 362 and 314 cm⁻¹ bands of ethyl benzene. We calculate an A' mode at 315 cm⁻¹ and A" mode at 334 cm⁻¹, similar to the calculated values of 308 and 339 cm⁻¹ calculated by Lau and Snyder¹². Our PED indicates these modes to be C-C-Me bend and C-Me bend, respectively. Lau and Snyder do not give a PED for ethyl benzene. These authors assign a mode at 308 cm⁻¹ to the former and 360 cm⁻¹ to the latter. However, Green¹⁶ assigns a depolarized Raman line near 314 cm⁻¹ to an A" mode and a 365 cm⁻¹ infra-red band to an A' mode, reversing the assignments of Lau and Snyder. In the refinement we tried both assignments but could not force either frequency more than 10 cm⁻¹ from their original value, even when the C-C-C bending constant H_{ω} was included in the iteration. In the final analysis both frequencies were given a 'confidence' of zero, thus removing them from the refinement. We presume that the addition of other interaction force constants would improve the fit of these two modes, but could also give misleading results. Certain interactions will be zero depending upon the symmetry properties of the molecule, which in turn depend upon the orientation of the ethyl

Table 2f-Ethyl benzene A"

Freque	ncy (cm ⁻¹)	
vobs	νcalc	Potential energy distribution
3055	3054	K _s (98%)
3043	3042	K _s (99%)
2965	2965	K _r (99%)
2918	2918	K _d (99%)
1589	1590	K_T (95%), H_Ω (13%)
1459	1449	H _o (91%)
1453	1443	K ₇ (39%), H _α (61%)
1332	1337	Kτ(79%), Hα(63%), FΥ(-15%), FΥ(-11%),
		F ት _ሳ (—13%), F ት _ሳ (—13%)
1310	1306	Kァ(52%), Hゅ(48%), H~(20%)
1245	1237	$K_{\tau}(17\%)$, $H_{\phi}(11\%)$, $H_{g}(15\%)$, $H_{\gamma}(50\%)$
1157	1159	K_T (17%), H_{ϕ} (11%), H_{β} (15%), H_{γ} (50%) K_T (29%), H_{ϕ} (72%), F_{ϕ}^T (11%), F_{ϕ}^T (11%)
1072	1090	$K_{T}(32\%), H_{\phi}(34\%), H_{\gamma}(14\%)$
1033	1027	$K_{T}(26\%), H_{\beta}(25\%), H_{\gamma}(39\%)$
975	968	$H_{\mu}(92\%), H_{z}(28\%), F_{z\mu}(-12\%), F_{z\mu}(-12\%)$
856	849	$H_{\mu}^{(81\%)}, H_{z}^{(20\%)}$
787	772	$H_{\beta}^{-}(43\%), H_{\gamma}^{-}(62\%), F_{\gamma\omega}(10\%)$
618	623	H_{Ω} (95%), H_{ϕ} (12%)
415	404	$H_{\mu}^{(18\%)}$, $H_{z}^{(51\%)}$, $F_{z}^{(17\%)}$
314	334	$H_{\Phi(X)}$ (83%), H_{τ} (12%)
219	187	$H_{\Phi(X)}$ (10%), H_{τ} (86%)
30	29	H _z (98%)

group relative to the ring. In order to keep the result as general as possible we therefore decided not to include additional interactions involving the C-C-Me bend H_{ω} and the phenyl group.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support of the National Science Foundation, Grant DMR 7910841, Polymers Program.

REFERENCES

- Liang, C. Y. and Krimm, S. J. Polym. Sci. 1958, 27, 241
- Onishi, T. and Krimm, S. J. Appl. Phys. 1961, 32, 2320 Tadokoro, H., Nishiyama, Y., Nozakura, S. and Murahashi, S.
- Bull. Chem. Soc. Jpn. 1961, 34, 381
- Kobayashi, M. Bull. Chem. Soc. Jpn. 1961, 34, 560 Kobayashi, M., Akita, K. and Tadokoro, H. Die Makromol Chemie 1968, 118, 324
- 6 Jasse, B., Lety, A. and Monnerie, L. Spectrochim. Acta. 1975, 31A,
- Jasse, B. and Monnerie, L. J. Phys. D: Appl. Phys. 1975, 8, 863
- Jasse, B., Lety, A. and Monnerie, L. J. Mol. Struct. 1973, 18, 413
- Jasse, B. and Monnerie, L. J. Mol. Struct. 1977, 39, 165
- Painter, P. C. and Koenig, J. L. J. Polym. Sci., Polym. Phys. Edn. 10 1977, 15, 1885
- Painter, P. C. and Snyder, R. W. Specirochim Acta. 1980, 36, 337 11
- 12 Lau, L. C. and Snyder, R. G. Spectrochim Acta. 1971, 27A, 2073
- 13 Snyder, R. G. J. Chem. Phys. 1967, 47, 1316
- Boerio, F. J. PhD Thesis Case Western Reserve University, Cleveland, Ohio 44106
- 15 Hannon, M. J. PhD Thesis Case Western Reserve University, Cleveland, Ohio 44106
- 16 Green, J. H. S. Spectrochim Acta. 1962, 18, 39
- Harris, R. K. and Thorley, M. J. Mol. Spectr. 1972, 42, 407